BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON

BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON

ORTEGA CANDEL, JOSÉ MANUEL

32,90 €
IVA incluido
Disponible 24/48 horas
Editorial:
RA-MA
Año de edición:
2022
ISBN:
978-84-19444-58-5
Páginas:
408
Encuadernación:
Rústica
Colección:
SIN COLECCION
32,90 €
IVA incluido
Disponible 24/48 horas

CAPÍTULO 1. INTRODUCCIÓN A BIG DATA 1.1 INTRODUCCIÓN 1.2 DEFINICIÓN DE BIG DATA 1.3 TIPOS DE DATOS 1.4 CARACTERÍSTICAS DE BIG DATA 1.5 DESAFÍOS DE BIG DATA 1.6 TECNOLOGÍAS PARA BIG DATA 1.7 PERFILES BIG DATA 1.7.1 DIRECCIÓN DE DATOS(CHIEF DATA OFFICER-CDO) 1.7.2 CIENTÍFICO DE DATOS(SCIENTIST) 1.7.3 ANALISTA DE DATOS(DATA ANALYST) 1.7.4 INGENIERIO DE DATOS(DATA ENGINEER) 1.7.5 ARQUITECTO DE DATOS(DATA ARCHITECT) 1.7.6 GESTOR DE DATOS(DATA MANAGER) 1.7.7 CIUDADANO CIENTÍFICO DE DATOS(CITIZEN DATA SCIENTIST) 1.7.8 ADMINISTRADOR DE DATOS( DATA STEWARD) 1.7.9 TABLA COMPARATIVA 1.8 BIG DATA ANALYTICS CAPÍTULO 2. ARQUITECTURAS BIG DATA 2.1 INTRODUCCIÓN 2.2 ACTORES PRINCIPALES EN UNA ARQUITECTURA BIG DATA 2.2.1 SISTEMA DE ORQUESTACIÓN 2.2.2 PROVEEDOR DE DATOS 2.2.3 PROVEEDOR DE APLICACIONES BIG DATA 2.2.4 PROVEEDOR DE INFRAESTRUCTURA BIG DATA 2.2.5 CONSUMIDOR DE DATOS 2.2.6 CAPA DE SEGURIDAD Y PRIVACIDAD 2.2.7 CAPA DE GESTIÓN. 2.3 TIPOS DE ARQUITECTURAS 2.3.1 PROCESAMIENTO BATCH 2.3.2 PROCESAMIENTO STREAMING 2.3.3 PROCESAMIENTO MAPREDUCE 2.4 ARQUITECTURA LAMBDA. 2.5 ARQUITECTURA KAPPA 2.6 APACHE KAFKA 2.7 ARQUITECTURA POR CAPAS 2.8 CASOS DE USO DE ARQUITECTURAS BIG DATA 2.8.1 AUTOMÓVILES EN UN MUNDO DE STREAMING 2.8.2 CONSTRUYENDO UN SISTEMA DE LINAJE DE DATOS 2.8.3 WOLFRAM LANGUAGE 2.9 BIG DATA LANDSCAPE 2.10 HERRAMIENTA PARA EL ANÁLISIS DE DATOS MASIVOS 2.11 CONCLUSIONES CAPÍTULO 3. BASES DE DATOS PARA BIG DATA 3.1 INTRODUCCIÓN 3.2 COMPARACIÓN SQL VS NOSQL 3.3 BASES DE DATOS NOSQL 3.4 VENTAJAS DE LAS BASES DE DATOS NOSQL 3.5 TIPOS DE BASES DE DATOS NOSQL 3.6 IMPLANTANDO NOSQL 3.7 BASES DE DATOS DOCUMENTALES 3.7.1 CASOS DE USO BASES DE DATOS DOCUMENTALES 3.7.2 MONGODB 3.7.3 INDEXACIÓN EN MONGODB 3.7.4 REPLICACIÓN EN MONGODB 3.7.5 USO DE MONGODB DESDE PYTHON 3.7.6 COUCHDB 3.7.7 ARQUITECTURA DE COUCHDB 3.8 BASES DE DATOS ORIENTADAS A COLUMNAS 3.8.1 APACHE CASSANDRA 3.8.2 CONSISTENCIA EN APACHE CASSANDRA 3.8.3 CASOS DE USO 3.9 BASES DE DATOS CLAVE-VALOR(KEY-VALUE) 3.9.1 REDIS 3.10 BASES DE DATOS ORIENTADAS A GRAFOS 3.10.1 CASOS DE USO BASES DATOS DE GRAFOS 3.10.2 NEO4J 3.11 TEOREMA CAP 3.12 CONCLUSIONES NOSQL CAPÍTULO 4. INTRODUCCIÓN A LA CIENCIA DE DATOS Y MACHINE LEARNING 4.1 DEFINICIÓN DE CIENCIA DE DATOS 4.2 DEFINICIONES DE APRENDIZAJE Y MACHINE LEARNING 4.3 SISTEMAS EXPERTOS 4.4 MINERÍA DE DATOS ( DATA MINING) 4.4.1 INTEGRACIÓN Y RECOPILACIÓN DE INFORMACIÓN 4.4.2 SELECCIÓN, LIMPIEZA Y TRANSFORMACIÓN DE DATOS 4.4.3 TÉCNICAS DE MINERÍA DE DATOS 4.5 INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO 4.6 TIPOS DE APRENDIZAJE AUTOMÁTICO. 4.7 APRENDIZAJE SUPERVISADO VS NO SUPERVISADO 4.7.1 APRENDIZAJE SUPERVISADO:CLASIFICACIÓN Y REGRESIÓN 4.7.2 ÁRBOLES DE DECISIÓN 4.7.3 ALGORITMO K-NEAREST NEIGHBOR 4.7.4 APRENDIZAJE NO SUPERVISADO 4.8 TÉCNICAS DE MACHINE LEARNING 4.9 PROBLEMA DEL SOBREENTRENAMIENTO 4.9.1 CÓMO EVITAR EL SOBREENTRENAMIENTO 4.10 FASES PARA ABORDAR UN PROBLEMA DE ML 4.10.1 PASOS PARA CONSTRUIR UN MODELO DE ML 4.10.2 EVALUACIÓN DE MODELOS CAPÍTULO 5. TRATAMIENTO DE DATOS CON PYTHON 5.1 JUPYTER NOTEBOOK 5.2 MERCURY 5.3 NUMPY 5.4 SCIPY 5.5 PANDAS 5.5.1 ESTRUCTURAS DE DATOS EN PANDAS 5.5.2 SERIES 5.5.3 DATAFRAMES 5.5.4 LECTURA DE UN FICHERO CSV CON PANDAS 5.5.5 ALTERNATIVAS A PANDAS. 5.6 LECTURA DE UN FICHERO JSON 5.7 LECTURA Y ESCRITURA EN FORMATO PICKLE CAPÍTULO 6. SCIKIT-LEARN COMO LIBRERÍA DE MACHINE LEARNING 6.1 INTRODUCCIÓN A SCIKIT-LEARN 6.2 DATASETS EN SCIKIT-LEARN 6.3 CARGANDO CONJUNTOS DE DATOS EN SCIKIT-LEARN. 6.3.1 CONJUNTOS DE DATOS GENERADOS DE FORMA ALEATORIA 6.4 DIVIDIR DATOS DE ENTRENAMIENTO Y TEST. 6.5 APRENDIZAJE AUTOMÁTICO CON SCIKIT-LEARN. 6.5.1 ESTABLECER UNA METODOLOGÍA DE EVALUACIÓN 6.6 REGRESIÓN LINEAL 6.6.1 IMPLEMENTACIÓN DE REGRESIÓN LINEAL 6.6.2 PREDECIR EL VALOR DEL ALQUILER DE LAS VIVIENDAS 6.7 ALGORITMO DE REGRESIÓN LOGÍSTICA 6.7.1 VALIDACIÓN CRUZADA EN SCIKIT-LEARN 6.7.2 OBTENER LA MATRIZ DE CONFUSIÓN 6.8 INTRODUCCIÓN A LOS ÁRBOLES DE DECISIÓN 6.8.1 ALGORITMO DE ÁRBOLES DE DECISIÇON EN SCIKIT-LEARN 6.9 SVM COMO ALGORITMO DE MÁQUINAS DE VECTORES DE SOPORTE 6.9.1 ALGORITMO DE SUPPORT VECTOR MACHINE EN SCIKIT-LEARN 6.9.2 OPTIMIZANDO PARÁMETROS CON GRIDSEARCHCV 6.10 KNN COMO ALGORITMO DE CLASIFICACIÓN SUPERVISADA 6.10.1 IMPLEMENTACIÓN DE KNEIGHBORSCLASSIFIER 6.10.2 RADIUSNEIGHBORSCLASSIFIER 6.11 CLUSTERING Y APRENDIZAJE NO SUPERVISADO 6.12 EXTRACCIÓN DE CARACTERÍSTICAS CAPÍTULO 7. REDES NEURONALES ARTIFICIALES 7.1 INTRODUCCIÓN 7.2 PERCEPTRÓN SIMPLE 7.3 PERCEPTRÓN MULTICAPA 7.4 RED NEURONAL RECURRENTE 7.5 RED NEURONAL CONVOLUCIONAL(CNN) 7.6 REDES NEURONALES CON TENSOR FLOW 7.6.1 ALGORITMO DE BACKPROPAGATION 7.6.2 PLAYGROUND TENSOR FLOW 7.6.3 INTRODUCCIÓN A TENSOR FLOW 7.6.4 FUNCIONAMIENTO DE TENSOR FLOW 7.7 USO DE LA LIBRERÍA KERAS EN DEEP LEARNING 7.8 USO DE GOOGLE COLAB. 7.9 REDES NEURONALES CON SKLEARN 7.10 TABLA COMPARATIVA CAPÍTULO 8. PLATAFORMA HADOOP 8.1 INTRODUCCIÓN 8.2 HERRAMIENTAS 8.3 SERVICIOS Y HERRAMIENTAS DEL ECOSISTEMA HADOOP 8.4 HADOOP DISTRIBUTED FILE SYSTEM (HDFS) 8.5 HADOOP MAPREDUCE 8.6 INTRODUCCIÓN A MAPREDUCE 8.7 DISTRIBUCIONES HADOOP 8.7.1 CLOUDERA 8.8 CONCLUSIONES CAPÍTULO 9. PROCESAMIENTO DISTRIBUÍDO CON APACHE SPARK 9.1 INTRODUCCIÓN 9.2 INTRODUCCIÓN AL PROCESAMIENTO DISTRIBUÍDO 9.3 INTRODUCCIÓN A APACHE SPARK 9.4 ECOSISTEMA DE APACHE SPARK 9.5 VENTAJAS DE APACHE SPARK 9.6 ARQUITECTURA DE APACHE SPARK 9.7 RDD (RESILIENT DISTRIBUTED DATASETS) 9.8 SPARK CON SCALA 9.9 SPARK PARA CIENTÍFICO DE DATOS CAPÍTULO 10. PYSPARK COMO LIBRERÍA DE PROCESAMIENTO DISTRIBUÍDO 10.1 INSTALACIÓN DE APACHE SPARK 10.2 INTRODUCCIÓN A DOCKER 10.3 INSTALAR Y EJECUTAR PYSPARK CON DOCKER 10.4 API DE SPARK EN PYTHON 10.5 INTRODUCCIÓN A PYSPARK 10.6 MAPREDUCE A PYSPARK 10.7 TRABAJANDO CON SPARK SQL Y DATAFRAMES 10.8 SPARK STREAMING CAPÍTULO 11. ENTORNOS DE EJECUCIÓN SPARK 11.1 INTRODUCCIÓN 11.2 FINDSPARK 11.3 DATABRICKS:INTRODUCCIÓN A SPARK EN LA NUBE 11.4 APACHE ZEPPELIN CAPÍTULO 12. MLLIB COMO MÓDULO DE MACHINE LEARNING 12.1 INTRODUCCIÓN. 12.2 REGRESIÓN LINEAL CON PYSPARK 12.3 CLUSTERING CON PYSPARK 12.4 CLASIFICACIÓN MENSAJES SPAM CON PYSPARK CAPÍTULO 13. SISTEMAS DE RECOMENDACIÓN 13.1 INTRODUCCIÓN. 13.2 TIPOS DE SISTEMAS DE RECOMENDACIÓN 13.4 FILTRADO COLABORATIVO MATERIAL ADICIONAL

El libro está dirigido aquellos lectores que estén trabajando en proyecto relacionados con big data y busquen identificar las características de una solución de Big Data, los datos asociados a estas soluciones, la infraestructura requerida, y las técnicas de procesamiento de esos datos. Entre los principales objetivos podemos destacar: Introducir los conceptos de ciencias de datos y machine learning. Introducir las principales librerías que podemos encontrar en Python para aplicar técnicas de machine learning a los datos. Dar a conocer los pasos para construir un modelo de machine learning, desde la adquisición de datos, pasando por la generación de funciones, hasta la selección de modelos. Dar a conocer los principales algoritmos para resolver problemas de machine learning.

Artículos relacionados

  • GRACIAS POR VENIR
    JUAN JOSÉ MONTIJANO
    Lina Morgan, Tania Doris, Esperanza Roy, Concha Velasco y otros nombres míticos de este género musical tan importante en nuestra cultura, juntos por fin en un libro. Durante más de 150 años desde su nacimiento en 1865, la revista musical española entretuvo a varias generaciones de españoles que acudieron a los distintos teatros en que era programaba para evadirse de la reali...
    Disponible en la librería

    27,96 €

  • EL CLUB DE LOS BUSCADORES DE SOLUCIONES
    "JOSÉ ANTONIO MARINA
    El libro aborda una cuestión tan importante como es la necesidad de afrontar los problemas y resolverlos. A lo largo de la vida nos encontramos inevitablemente con problemas, y en la adolescencia empezamos a ser más conscientes de todos los obstáculos, confrontaciones y dilemas que nos rodean. José Antonio Marina invita en este libro a los más jóvenes a desarrollar la intelig...
    Disponible en la librería

    19,95 €

  • LA CUCHARA DE CHOCOLATE
    LA CUCHARA DE PLATA
    La cocina de la Cuchara de Plata es conocida en todo el mundo como la voz autorizada en cocina italiana y el principal recurso culinario italiano - este nuevo libro sobre el ingrediente favorito de todos presenta 100 de las mejores recetas de chocolate de la Cuchara de Plata, acompañadas de fotografía y diseño totalmente nuevos, así como 30 técnicas básicas para trabajar el cho...
    Disponible en la librería

    39,95 €

  • AGENDA 2025 DE LAS MUJERES. DESMEDIDAS
    ALBA VARELA LASHERAS / SANCHEZ CAMPOS, CARMEN
    Tu agenda feminista un año más, esta vez dedicada a la lucha contra la gordofobia y la violencia estética Ya hemos hablado en las agendas de las mujeres sobre lo deseable que es nuestro silencio desde el patriarcado. Nos quieren sumisas, modestas y sin iniciativa sexual. Calladas en nuestras voces, en nuestra escritura y nuestro arte. Siempre musas y objetos, nunca sujetas a nu...
    Disponible en la librería

    16,95 €

  • CUENTOS VICTORIANOS DE FANTASMAS PARA NAVIDAD
    VARIOS AUTORES
    "Durante la época victoriana se convirtió en tradición para los editores de periódicos y revistas imprimir historias de fantasmas durante la temporada navideña. La idea era que las familias pudieran leerlas en invierno junto a la chimenea o a la luz de las velas. Este libro recopila, por primera vez, trece de estos cuentos, que incluyen una amplia gama de historias de diversos ...
    Disponible en la librería

    21,00 €

  • MACHINES
    AUTUMN
    Explore the workings of amazing machines, from cars to factories to smartphones, with incredible illustrations and dozens of shaped flaps to lift. ...
    Disponible en la librería

    15,00 €

Otros libros del autor

  • INGENIERIA DE DATOS. DISEÑO, IMPLEMENTACION Y OPTIMIZACION DE FLUJOS DE DATOS EN
    ORTEGA CANDEL, JOSE MANUEL
    Este libro es una guía esencial para quienes desean dominar los conceptos y técnicas de ingeniería de datos. A través de un enfoque teóricopráctico, se exploran los métodos para la ingesta, almacenamiento y procesamiento eficiente de datos, con énfasis en el uso de Python y otras tecnologías clave. Los lectores aprenderán sobre la importancia de los datos en las organizaciones,...
    Disponible en la librería

    29,90 €

  • CIBERSEGURIDAD
    ORTEGA CANDEL, JOSÉ MANUEL
    La ciberseguridad es uno de los desafíos;más importantes de la era digital;pues se trata de un punto crítico;en cualquier entorno tecnológico.;Debido a que los entornos son cada vez más dinámicos y cambiantes, es necesario estar actualizado ante nuevas amenazas y vulnerabilidades que aparecen cada día. Por ello, las organizaciones han empezado a destinar una parte de su presupu...
    Disponible 24/48 horas

    29,00 €

  • HACKING ÉTICO CON HERRAMIENTAS PYTHON
    ORTEGA CANDEL, JOSÉ MANUEL
    "En los últimos años, Python se ha convertido en un lenguaje muy adoptado por la industria de la seguridad informática, debido a su simpleza, practicidad, además de ser un lenguaje tanto interpretado como de scripting. Su integración con multitud de libr ...
    Consultar disponibilidad

    25,90 €

  • SEGURIDAD EN APLICACIONES WEB JAVA
    ORTEGA CANDEL, JOSÉ MANUEL
    Java es uno de los lenguajes de programación más utilizados a nivel empresarial a la hora de desarrollar aplicaciones de gestión con buenos niveles de escalabilidad y disponibilidad. Además de tener sólidos conocimientos en programación orientada a objet ...
    Disponible 24/48 horas

    29,90 €